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  Abstract :  

In a first part, I defend that formal semantics can be used as a guide to 

ontological commitment. Thus, if one endorses an ontological view O and wants to 

interpret a formal language L, a thorough understanding of the relation between 

semantics and ontology will help us to construct a semantics for L in such a way that 

its ontological commitment will be in perfect accordance with O. Basically, that is 

what I call constructing formal semantics from an ontological perspective. In the rest 

of the paper, I develop rigorously and put into practice such a method, especially 

concerning the interpretation of second-order quantification.  

I will define the notion of ontological framework: it is a set-theoretical structure 

from which one can construct semantics whose ontological commitments correspond 

exactly to a given ontological view. I will define five ontological frameworks 

corresponding respectively to: (i) predicate nominalism, (ii) resemblance nominalism, 

(iii) armstrongian realism, (iv) platonic realism, and (v) tropism.  

In those different frameworks, I will construct different semantics for first-order 

and second-order languages. Notably I will present different kinds of nominalist 

semantics for second-order languages, thus showing how we can quantify over 

properties and relations while being ontologically committed only to individuals. 

More generally I will show in what extent those semantics differ from each other; it 

will make clear how the disagreements between the ontological views extend from 

ontology to logic, and how metaphysical questions can be correctly treated, in those 

semantics, as simple questions of logic.  

 

Keyword: ontology, semantics, ontological commitment, second-order logic, 

nominalism, realism, tropes. 
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1. Formal semantics as a guide to ontological commitment 

1.1. Formal semantics as describing a truthmaking structure 

There are basically two steps in constructing a formal semantics for a language: 

i) First we have to define what is a model for this language. (It is usually 

defined by set-theoretical conditions.)  

ii) Then we give rules according to which, for every model and every formula of 

the language, we can determine whether or not this formula in this model has a 

certain “value”. (In the simplest case, there is only one value: true.) 

Is formal semantics a legitimate source of information about ontology? One 

could argue that it is nothing more than an abstract device whose purpose is to prove 

certain features of a deductive system, especially its consistency. This passage from 

Zalta [1] illustrates perfectly this attitude towards semantics:  
 

“It is important to remember that the formal semantics simply provides a set-

theoretical framework in which models of the metaphysical theory may be constructed. 

The models serve the heuristic purpose of helping us to visualize or picture the theory 

in a rigorous way. It is extremely important not to confuse the models of the theory 

with the world itself. Many theorist today tend to give models of a theory an exalted 

status that they do not have. (…) As far as the present work is concerned, all that the 

models of a theory do is show that the theory is consistent, that the logic is complete, 

that the axioms are categorical, and so forth.” (Zalta [1], p.34-35) 
 

According to such a view, a model does not represent in any way the structure 

of a world, and therefore the defined notion of truth in a model has in fact nothing to 

do with truth; semantics is nothing but a logical tool without any ontological 

significance. This a convenient view for a neo-meinongian theorist such as Zalta: even 

if the models of his theory contains a domains of objects, counting among them 

impossible, contradictory and incomplete objects, since those models are not supposed 

to be an image of the world, one could endorse the theory while refusing (or at least 

not endorsing openly) the idea that this domain of objects is really in our world.  

There is nothing wrong in considering semantics in that reductive way. But now 

let me explain why I think we should give to formal semantics a more interesting 

purpose.  

I am a realist in the following sense: I assume that the world (the way things 

are in the world) is what makes true the true propositions of our language. If one 

accepts this realist premise, the idea that formal semantics may give a picture of this 

world/language relation is very appealing: a model seems to represent the structure of 

a world, and the semantic rules give an account of how any given world makes true 

or false every formula of the language.  

Thus, from a realist point of view, a natural purpose of formal semantics would 

be to describe the world/language relation. 
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Note that talking about worlds for models may be misleading for the following 

reason: in semantics for modal languages (often called possible worlds semantics), 

certain elements of the models are supposed to stand for worlds or possible worlds, 

therefore it would be inappropriate to think of a model as a world itself. One might 

prefer to say that such a model represents the structure of a universe of possible 

worlds; thus the semantic rules give an account of how this modal universe makes 

true or false every formula of the modal language. There is a more neutral option 

anyway, if one does not want to talk about worlds nor universes: one might say that 

a model represents the structure of an ontological situation in general, i.e. any 

possible answer to the ontological question: what is there? 

In conclusion, if we take semantics seriously, i.e. if we take it as an attempt to 

describe the world/language relation, to define what is a model is basically to define 

what is the structure of any ontological situation; and the semantic rules are rules 

governing how any ontological situation makes true or false any formula of the 

language. In other terms, the semantic rules describe the truthmaking of the formulas. 

 

 

1.2. Truthmaking as a guide to ontological commitment 

I will defend that the ontological commitments of a sentence or a theory are to 

be read off what makes true this sentence or this theory (granted that they are true). 

Such a view as been endorsed by various authors, see for example Simons [2], Heil [3], 

Armstrong [4], Cameron [5, 6]. Though it offends the quinean orthodoxy about 

ontological commitment (but we may note that many philosophers have already 

argued against it, see for example the excellent criticism in Prior [7] ch.3 about 

second-order quantification), I think that the position I defend is in fact very natural 

and intuitive as soon as one adopts a friendly attitude towards the idea of 

truthmaking. This passage of Simons [1997] described very accurately how the two 

notions of truthmaking and ontological commitment seem to be related: 
 

“Ontological commitment is a sort of converse to an idea which is of more recent 

prominence: truth-making. Whereas when we ask what things are such that their 

existence is necessary for a sentence to be true, we are asking after its ontological 

commitments; when we ask what things are such that their existence is sufficient for 

the sentence to be true, we are considering the sentence’s truth-makers. (...) We could 

therefore characterize the ontological commitments of a sentence or sentences as given 

by the least that would be required to make it true.” (Simons [2] p.265.) 
 

The quantificational approach and the truthmaking approach would not be in 

opposition if the truthmaker of an existentially quantified sentence like “there is X” 

were always that very X. But a truthmaker theorist can precisely reject this idea. As 

Cameron puts it: 
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“I think one of the benefits of truthmaker theory is to allow that <x exists> might 

made true by something other than x, and hence that ‘a exists’ might be true according 

to some theory without being an ontological commitment of that theory.” (Cameron 

[5], p.401) 
 

Let us take an example. According to the quinean criterion, if the sentence 

“There is a table” is literally true, we are ontologically committed to the existence of 

a distinct entity corresponding to the table. Thus, if we think that a table is a bunch 

of atoms arranged in a certain way, we must not take “There is a table” as literally 

true but as an improper way to say “There are such and such atoms arranged in such 

and such way”. On the other hand, according to the truthmaking criterion, “There is 

a table” ontologically commits us only to whatever makes true this sentence. (More 

precisely, we must consider a minimal truthmaker.) If we assume that a (minimal) 

truthmaker for “There is a table” is only the fact that a bunch of atoms are arranged 

in such and such way, then this sentence only commits us to the existence of these 

atoms arranged in that way. Thus, “There is a table” can be literally true without 

committing to the existence of a new entity.  

Another insightful example is given by Simons: 
 

“This way of looking at ontological commitment highlights something which might 

otherwise remain clouded, and which one might call the inscrutability of ontological 

commitment. Consider first a simple medical sentence such as Sam has hepatitis. This 

is made true by hepatitis viruses in sufficient numbers in Sam’s body, causing 

inflammation of his liver. But we cannot tell this by simply analyzing the sentence 

linguistically: it is a matter of medical knowledge, not conceptual analysis. Not even 

the type of virus is fixed by the statement: when in a paper on truth-making, Mulligan 

et al. put forward this example, two types of hepatitis virus were known, since then 

another has come to light, which only serves to underline the point that it is in general 

an a posteriori matter what makes a given sentence true. But if that is so then the 

ontological commitments or truth-making minima of a sentence are not to be read off 

its logico-grammatical form either: when we affirm that Sam has hepatitis then all we 

are committed to is something or other, whatever it is that causes Sam’s liver to be 

inflamed. In general the sentences whose commitments are most readily ascertainable, 

at least in part, are existential assertions, whether particular or general, but they 

obviously form only a small proportion of all sentences.” (Simons [2] p.265.) 
 

Of course, this approach of ontological commitment is not exempt of difficulties, 

but I think it is the best way to ask the question: most clearly if we are realist about 

truth, there is a strong connection between what would make true a theory and what 

there would be according to this theory, in other terms between the truthmakers of 

the theory and its ontological commitments. 

Now, if we take formal semantics seriously, that is to say if we think that the 

semantics of a formal language provides an account of the truthmaking of every 

formula of this language in any ontological situation, and if we adopt the truthmaker 
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approach for ontological commitment, then we have excellent reason to take formal 

semantics as a guide to ontological commitment.  

Does it mean that we must follow the semantics wherever it leads us from an 

ontological point of view? No. The idea is precisely to proceed in the other way. As 

soon as we will understand correctly the relation between formal semantics and 

ontology, it will become possible to construct a semantics in such a way that in fine 

its ontological commitments will be in accordance with a given ontological view. That 

is what I call constructing semantics from an ontological perspective.  

I will now put into practice this method.  

 

 

 

2. Five ontological frameworks  

In semantics theory we usually define a model in a set-theoretical framework. A 

model for a language �� constructed from a set of non-logical constant � (its 

vocabulary) will be most of the time a structure of this form <X, Y, …, δ> where X, 

Y, … are any sort of sets or functions, and δ is a denotation function, i.e. a function 

mapping elements of the vocabulary � to something in the model. Except this 

function δ which assures the interpretation of the language, every other element of a 

model can be seen as purely ontological elements. Hence, what I call the ontological 

framework from which a semantics is constructed, it is the structure <X, Y, …,>, i.e. 

the structure of a model without the denotation function.  

The ontological framework is supposed to represent the structure of what there 

is, the structure of any ontological situation. Thus, choosing a framework or another 

should only reflect ontological insights, independently from the languages we want to 

interpret in this framework.  

Things will get clearer with few examples. Let us consider five classical 

ontological views about the status of individuals and universals:  

Strong nominalism. The world is made of individuals and nothing else, and it 

is not structured in any way. 

Weak nominalism. The world is made of individuals and nothing else; 

however, the set of individuals is structured. (For example it can be structured by a 

resemblance relation.)  

Strong nominalism agrees with weak nominalism about the fundamental bricks 

of reality: only individuals. But according to strong nominalism, this set of bricks has 

no structure; a predicate like Red correspond to nothing in reality; an individual is 

red only because this predicate applies to it. This view is also called predicate 

nominalism. On the contrary, according to weak nominalism, the use of a predicate 

may be grounded in an ontological structure. The most popular candidate is 

resemblance: there are only individuals, but they are structured by a resemblance 
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relation. The predicate Red applies to an individual because this individual belongs 

to a set of resembling things.  

Weak realism. What is fundamental is the state of affairs a universal n-adic 

being instantiated by n individuals. Therefore there are individuals and universals, 

but they are always connected in a state of affairs.  

Strong realism. There are universals, and there being a given universal is 

independent from there being any individual instantiating them. On the contrary, 

individuals only exists as they instantiate universals. 

Weak realism corresponds to a certain kind of aristotelianism, a view being 

notably held by David Armstrong. Strong realism corresponds to a full-blooded 

platonism about universals. 

Tropism. The only fundamental entities are tropes or abstract particulars. 

Individuals are constituted of compresent tropes and universal are constituted of 

resembling tropes. About tropism, see 2.5. 

None of these five claims tells us specifically what there is; they only tell us 

what kind of things there are. In other terms, it is an answer to the question “what is 

the structure of an ontological situation?”, not an answer to the question “what is the 

actual ontological situation?”. 

It is easy to see that an ontological framework corresponds to an answer to the 

first question: “what is the structure of an ontological situation?” Indeed, as I defined 

it, an ontological framework determine a certain kind of models, and those models are 

supposed to represent ontological situations. Thus, those five ontological views can be 

represented as five different ontological frameworks.  

In the rest of this section I will show how we can define those frameworks and I 

will give simultaneously for each of them a sketch of a semantics for first-order 

languages. Then in section 3, I will present in full details different semantics for 

second-order languages constructed from each of those different frameworks.  

 

 

2.1. Strong nominalist framework 

The strong nominalist framework is the simplest. There are only individuals, 

and they are not structured in any way, therefore this is simply a structure <�> 

where � is a set of urelements (standing intuitively for individuals).  

Thus, a nominalist semantics is a semantics in which models have the following 

structure: <�, δ>. In standard semantics for first-order logic, models have precisely 

this structure; a constant object a denotes a member of �, a monadic predicate P 

denotes a set of members of �, and the formula Pa is true iff δ(a) ∈ δ(P). Thus we 

can properly say that standard semantics for first-order logic is a strong nominalist 

semantics. 

Note that the framework represents the structure of what there is; not what 

there is actually. I am not saying that according to a strong nominalist, the world is 
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a set (which would be clearly false); I am just saying that the structure of the world 

is adequately represented as a set. 

I will call the urelements of a framework the entities of this framework. In a 

strong realist frameworks, individuals are the only entities. (In a certain sense, 

entities can be considered as the building bricks of the world, but that does not mean 

that the set of entities is fundamental; I will soon say more about fundamentality and 

we will see that there is a difference between being an entity and being fundamental.) 

 

 

2.2. Weak nominalist framework 

In a weak nominalist framework, there are still only individuals, but the set of 

individuals is structured. Let us assume that it is structured by resemblance. (It is 

the most standard account. We could also consider the idea of natural class. I do not 

think the ontological framework would be very different.) Therefore, we need 

something more than just a set � of individuals.  

Let us first define a weak nominalist framework as a structure <�, �> where � 

is a set of urelements, let us call them the individuals, and � is a set {�1, …, �n, …} 

where each �n is a set of sets of n-tuples of individuals, and such that each n-tuple of 

individual appears in at least one member of �n. Intuitively, �n is a set whose 

members are a sets of resemblance, i.e. sets of n-tuples of individuals resembling each 

other in some aspect. (Note that the empty set may be a member of �n.) If we 

consider the set �1, this set may contain for example a set of things containing 

apples, tomatoes, etc., things resembling each other in their redness. The condition 

that each n-tuple of individuals appears in at least one member of �n expresses the 

reflexivity of resemblance: each n-tuple of individuals resembles at least itself. (The 

symmetry is assured by the fact that we are considering sets of resembling things. 

But we do not have transitivity since those sets may partially overlap.)  

I will call basic sets of a framework a set whose construction cannot be entirely 

determined by another element of the framework. This notion will be useful in order 

to apprehend what is fundamental in a given framework. In the weak nominalist 

framework, � is not a basic set: it can be constructed from any of the �n’s. Therefore 

we could rather take <�> as the weak nominalist framework, where � is a set {�1, 

…, �n, …} such that: �1 is a set of sets of urelements; we define the set � as the union 

of these sets, and let us call those urelement individuals; and the other �n’s (for n ≥ 

2) are defined as previously.  

What is basic in the weak nominalist framework, thus, is not a set of individuals 

but a structure of resemblances on these individuals. Those individuals however are 

still the entities of the framework (they are the urelements). Therefore we can say 

that strong nominalism and weak realism agree on the entities, but not on the 

fundamental structure of reality: for the former, it is nothing but an unstructured set; 

for the latter, reality is structured by resemblance.  



8 

 

A weak nominalist semantics for first-order languages is not exactly standard 

but it is very close. A model would have to be a structure <�, δ> (and not <�, δ>, 

that is the only difference); as in standard semantics, a constant object denotes a 

member of �, and an n-adic predicate denotes a set of members of �; an atomic 

formula like Pa is true iff δ(a) ∈ δ(P). A notable difference with standard semantics 

for first-order languages is the fact that the denotation of an n-adic predicate can 

correspond to a set belonging to �n, that is a set of n-tuples of individuals resembling 

each other in some aspect. Those predicates can be characterized as real predicates, 

predicates corresponding to real properties or relations. This feature will be very 

important in a weak nominalist interpretation of second-order languages that we will 

see later. 

One last remark concerning those two kinds of nominalism I have presented so 

far: they cannot struggle against the well-known problems of extensionality 

illustrated by the example of “cordate” and “renate”; in order to deal with this, we 

could refine the framework in various way, for example by using Lewis’ possible 

worlds strategy. But I wish to keep the frameworks as simple as possible and thus I 

will not follow this way here. 

 

 

2.3. Weak realist framework 

I take weak realism as the view according to which the world is made out of 

states of affairs consisting of the instantiation of an n-adic universal by n individuals. 

Therefore, there are universals and individuals but every universal is instantiated and 

every individual instantiates at least one universal. 

A weak realist framework could be defined as a structure <�, 	, �> where � is 

a set of urelements (intuitively the individuals), 	 is a set of this form {	1, … 	n, …} 

such that each member of 	 is disjoint of each other and of � (intuitively the 	n’s 

are sets of n-adic universals), and � is a set of couples whose first term is a member 

of 	n and the second term is an n-tuple of members of � (intuitively it is an n-adic 

state of affairs), and such that every member of the 	n’s and of � appears in at least 

one member of �. (This condition expresses the fact that every universal and every 

individual appear in at least one state of affairs.) 

But 	 and � are not basic sets (i.e. sets whose constructions cannot be entirely 

determined by another element of the framework): 	 and � are indeed entirely 

determined by �. Thus I could equivalently define the weak realist framework as a 

structure <�> where � is a set of couples satisfying the following conditions: 

i) The first term of every couple of � is an urelement. Let us call those 

urelements universals. 

ii) The second term of every couples of � is a tuple of urelements. Let us call 

those urelements individuals. 

iii) The set of individuals is disjoint from the set of universals. 
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iv) If a universal X is the first term of a couple of � whose second term is an n-

tuple, then every couple of � whose first term is X has also an n-tuple as second 

term. (This condition assures that every universal has a defined adicity. One may 

argue that certain predicates like surround do not have a defined adicity, but I will 

not deal with this kind of case.) 

We can now define � as the set of individuals, the 	n’s as sets of universals 

appearing in couples of � whose second members are n-tuples, and 	 as the set of 

	n’s. The resulting framework is strictly equivalent to the first one.  

Why should we prefer this second framework to the first? Because this 

framework is more conform to the essential idea of weak realism as I defined it: the 

world is made out of state of affairs uniquely. The universals and individuals are only 

abstracted from them, they are not what is really fundamental, though they are the 

entities of the frameworks. In formal terms: 	 and � are not basic sets, though they 

are indeed sets of urelements.  

A model of a weak realist semantics must be a structure: <�, δ>, where � (and 

also 	 and �) is defined as earlier and δ is a denotation function. A weak realist 

semantics for first-order logic is very different from standard semantics (which, as we 

have seen, is a strong nominalist semantics). The denotation function would map an 

n-adic predicate to a member of 	n, while in standard semantics the denotation of an 

n-adic predicate is a subset of �n (i.e. the set of every n-uple of members of �). In less 

formal terms: in the standard semantics a predicate denotes directly its extension 

while in the weakly realist semantics it denotes a universal. 

Let us take a quick look to the semantic rule for an atomic formula Pa. In a 

standard nominalist model, this formula is true iff δ(a) ∈ δ(P). In a weak realist 

model, it is more complicated since δ(P) does not denote directly the extension of P: 

it denotes a monadic universal, and the formula is true iff there is a state of affairs in 

which the individual denoted by a instantiates the monadic universal denoted by P. 

Therefore the rule is: Pa is true iff <δ(P), δ(a)> ∈ �. 

A weak realist could of course prefer to use the standard semantics for first-

order logic (because it is standard and easier). But if a weak realist does so, that 

means that he does not take semantics seriously: the standard semantics for first-

order languages does not provides a picture of the world/language relation as he 

thinks it is. (From its ontological point of view, the world is a world of state of 

affairs, not a world of individuals only.) Only a semantics constructed from the weak 

realist framework can represent adequately the way things are from a weak realist 

perspective.  

Moreover, standard semantics and weak realist semantics for first-order logic are 

not equivalent. The following is a schema of valid formula in weak realist semantics 

(since every universal is instantiated), but not in standard one:  
 

  ∃x1…xn Knx1…xn   for any predicate Kn
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 2.4. Strong realist framework 

According to a strong realist, there are universals, they may be uninstantiated, 

and individuals only exist as they instantiate universals. Let us assume that this last 

condition means that every individual instantiates at least one universal.  

A strong realist framework may be represented as a structure: <	, �, ε> where 

� is a set of urelements (intuitively the individuals), 	 is a set {	1, … 	n, …} whose 

members are sets of urelements all disjoint from each other and from � (intuitively 

	n is the set of n-adic universals), and ε is a function mapping certain members of 

the 	n’s to a non-empty subset of �n (i.e. the set of n-tuples of members of �). 

Intuitively, ε is an instantiation function. Note that it maps certain members of the 

	n’s, not necessary all of them, thus there may be uninstantiated universals.  

Moreover, since every individual must be such that it instantiates at least one 

universal, I must add the following condition to the model: for every member X of �, 

there is a member Y of one of the 	n’s such that X is a term of one of the n-tuples 

member of ε(Y). 

Let us consider functions as sets of couples. This strong realist framework 

contains thus three sets: �, 	 et ε. Are they all basic sets?  

Given 	 and � it is impossible to deduce ε. For example, in a very simple 

framework with only the universals Red and Green and the individual i, it is 

impossible to say if i is Green or Red (or both). All we know is that i instantiates at 

least one of these two universals. The instantiation function is underdetermined by 	 

and �, therefore it is indeed a basic set. Instantiation is fundamental. 

On the contrary, given ε it is possible to deduce � since I have supposed that 

every member of � is instantiated: every member of � will thus appear somewhere in 

the mappings of ε. It is thus possible to define � from the function ε as follows: X is a 

member of � iff there is a Y member of 	n such that ε(Y) = <X1, …, Xn> and X is 

one of the X1, …, Xn. 

Can we also deduce 	 from ε? No. Consider the simple framework in which � 

contains only the individual i, and ε only maps the universal Red to i. Does that 

mean that 	 only contains Red? No, for there may be uninstantiated universals: 

maybe the uninstantiated universal Green is another member of 	. This set is 

underdetermined by the instantiation function ε. Therefore 	 is a basic set. 

Universals are fundamental.  

We could thus redefine the strong realist framework as a structure <	, ε> 

where 	 is a set {	1, … 	n, …} whose members are disjoint sets of urelements, and ε 

is a function mapping certain members of the 	n’s to a non-empty set of n-tuples of 

urelements all distinct from every members of the 	n’s. The set � can now be defined 

as the sets of those urelements. I think this framework reflects more closely the 
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strong realist view according to which individuals do not exist by themselves but only 

through the instantiation of a universal. 

Note that we could define a function ε* mapping every members of the 	n’s to a 

(possibly empty) subset of �n. (Recall that ε maps certain members of the 	n’s to a 

non-empty subset of �n.) The case where a universal is not instantiated would be 

represented as the case where ε* maps this universal to the empty set. Now, we could 

construct 	 from ε* and thus we could take a structure <ε*> as an equivalent 

strong realist framework. In what extent 	 is really a basic set? 

In fact, each ontological framework can be represented in different equivalent 

ways. How are we supposed to choose among them? We must remember that we are 

trying to construct ontological frameworks; we must thus construct those frameworks 

in an ontologically relevant way: it must reflects as closely as possible the ontological 

claims we are dealing with. For the present matter, those claims are: universals are 

fundamental entities, they may be uninstantiated, and individuals only exist as they 

instantiate universals. The structure <	, ε> seems to be the more adequate, where 

	 and ε are both basic and ε is a function mapping each instantiated universal to its 

extension. Uninstantiated predicates have no instantiation sets at all. On the 

contrary, in the structure with ε*, uninstantiated predicates do have an instantiation 

set: the empty set. We can observe that an uninstantiated predicate would be 

somehow coextensive to every other uninstantiated predicate even of a different 

adicity. It seems to me that it is a less elegant picture of the strong realist ontology; 

but I must admit that I cannot find any conclusive reason for choosing the 

framework <	, ε> rather the other. 

Let us compare strong realism and weak realism. They agree on entities: there 

are two kinds of entities, individuals and universals. But they disagree on what is 

fundamental: for the weak realist, neither individuals nor universals are fundamental, 

only state of affairs connecting individuals to universals are fundamental; for the 

weak realist, universals are fundamental (that means that the set of universals is a 

basic set), and the relation of instantiation is also fundamental, but the individuals 

are not fundamental. (Recall that entities are the urelements of the framework, while 

fundamentality is what characterizes the basic sets of the framework; therefore, 

“universals are fundamental entities” means that the set of urelements standing for 

universals is a basic set of the framework.) 

Let us finally take a quick look to a strong realist semantics for first-order 

language. A strong realist model for this language should be defined as a structure   

<	, ε, δ> satisfying the following conditions: 	 and ε (and also �) are defined as we 

have seen in this section; δ is a denotation function mapping constant objects to a 

member of � and n-adic predicates to a member of 	n if 	n is not empty, and it is 

not defined otherwise. The semantic rules for an atomic formula Pa will be: Pa is 

true iff ε(δ(P)) is defined and δ(a) ∈ ε(δ(P)); in other terms, Pa is true iff the 

predicate P denotes a universal that is instantiated by the individual denoted by a. 
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Does this semantics seem too complicated? I can only repeat what I said about 

weak realism: a strong realist could of course prefer standard semantics for first-order 

languages since it is much simpler, but doing so would mean that he refuses to take 

semantics seriously. Standard semantics does not accurately describe the way first-

order sentences are being made true from a strong realist point of view. What makes 

true that Pa is true, it is not the fact that a is the name of an individual which 

belongs to the set denoted by P; it is that P is the name of a universal and a is the 

name of an individual such that this individual instantiates that universal. This is the 

way it really works according to strong realism, and an ontologically relevant 

semantics must be able to represent it.  

 

 

2.5. Tropist framework 

Since Williams [8], a new beast has appeared (or reappeared under a new name) 

in the ontological zoo: tropes. They constitute a sort of intermediate entity between 

(concrete) individuals and (abstract) universals. They can be intuitively described as 

abstract particulars. For example the red of a particular apple is a trope ; according 

to the tropist view, the-red-of-this-apple is a distinct entity, both distinct from this 

apple and from the universal Red.  

The aim of a tropist account is to eliminate both universals and individuals by 

taking only tropes as entities. Concrete individuals will be constructed as bundles of 

compresent tropes, universals as bundles of resembling tropes. Compresence is 

supposed to be an equivalence relation, and resemblance a reflexive and symmetric 

relation.  

The tropist picture of the world is easy to grasp when we consider only tropes of 

property, i.e. monadic tropes. Thus a monadic tropist framework could be defined as 

a structure <�, 
, �> where � is a set of urelements (intuitively the tropes), 
 is a 

partition of � (intuitively, each member of 
 is a set of compresent tropes) and � is 

a set of non-empty sets of members of � such that every member of � appears in at 

least one member of � (intuitively, every member of � is a set of tropes resembling 

each other in some aspect, and every tropes resembles at least itself).  

We note immediately that � is not a basic set of the framework. Thus, an 

equivalent framework could be <
, �> where 
 is a set of non-empty disjoint sets of 

urelement, we defined the set � as the union of the members of 
, and � is defined 

as before. Thus, tropes are the only entities; and what is fundamental is the 

compresence and resemblance structures. 

This framework allows us to interpret first-order languages with only monadic 

predicates, roughly in the following way: a model is a structure <
, �, δ>; a 

constant object denotes a member of 
; a monadic predicate denotes a member of �; 

an atomic formula like Pa is true in a model iff δ(P) and δ(a) have a common 

member. Intuitively, that means that an individual is a set of compresent tropes, for 
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example an apple is a set of tropes among which we find the-red-of-this-apple; a 

universal is a set of resembling tropes, for example the universal Red is a set of tropes 

resembling each other like the red-of-this-apple, the-red-of-this-tomato and so forth; it 

is true that the apple is red because the trope the-red-of-this-apple belongs to the set 

of compresent tropes constituting the apple, and because the-red-of-this-apple belongs 

also to the set of resembling tropes constituting the universal Red. 

Now, let us introduce the idea of relational tropes. There is no consensus about 

how to do it. For example Bacon [9], Mertz [10] and Schneider [11] defend (in 

different ways) that relational tropes are not reducible to non-relational one, while 

Campbell [12] defends the opposite view. Here, I will follow a variant of this last 

view. I assume that an n-adic relational tropes is in fact n ordered monadic tropes T1, 

…, Tn. What makes those tropes relational is the way they resemble other tropes: the 

ordered set of tropes T1, …, Tn resembles other ordered sets of n tropes (while genuine 

monadic tropes only resemble each other individually). For example, the relational 

trope of the-love-of-Romeo-for-Juliet is in fact a couple of monadic tropes: roughly 

speaking, the trope of the-love-for-Juliet (a trope belonging to the cluster of 

compresent tropes constituting Romeo) and the trope of the-being-loved-by-Romeo (a 

trope belonging to the cluster of compresent tropes constituting Juliet). This couple 

of tropes resembles the couple of tropes formed by the-love-for-Desdemona and the-

being-loved-by-Othello. The universal Love is the set of every such couple of tropes 

resembling each other. (Of course, this formulation is not completely adequate, but 

the idea is, I think, easy to grasp.) 

I will now define my tropist framework as a structure <
, � > satisfying the 

following condition. First, 
 is (as previously) a set of non-empty disjoint sets of 

urelements (intuitively it is the compresence structure of the world). Then we define 

the set � as the union of the members of 
; let us call them tropes. Finally, let us 

define �. Intuitively, it will be a set whose members are sets of resembling tropes; 

since relational tropes are resembling each other only when they are taken in ordered 

sets, � will be a set whose members are sets of n-tuples of tropes. (We admit that 

the 1-tuple <X> is simply X.) The set � must also satisfy two conditions:  

i) The first condition expresses the fact that each tropes is either a genuine 

monadic trope, or it is a trope forming an n-adic relational trope with n – 1 other 

tropes. The condition is: if a trope T appears in an n-tuple <T1, …, T, …, Tn – 1> 

belonging to a member of �, then there is no other n-tuple belonging to a member of 

� in which T appears.  

ii) The second condition expresses the fact that each trope resembles at least 

itself: each trope appears in an n-tuple belonging to at least one member of �. 

Now we can complete our sketch of a tropist semantics for first-order languages: 

as before, a constant object denotes a member of 
; an n-adic predicate denotes a 

member of � whose members are n-tuples; and the atomic formula Rab is true in a 

model iff one of the couples of tropes denoted by R is such that the first term is a 
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trope belonging to the set of tropes denoted by a and the second term is a trope 

belonging to the set of tropes denoted by b. More briefly: Rab is true iff there are X 

and Y such that <X, Y> ∈ δ(R) and X ∈ δ(a) and Y ∈ δ(b).  

There is no standard approach in tropes theory, especially concerning the 

question of relational tropes, and I cannot deal with every variant; hence this tropist 

framework is only one among many others that could be constructed, but I think it is 

a convincing tropist account of reality. 

 

 

 

3. Semantics for second-order languages 

In the rest of this paper I will take a closer look to semantics for second-order 

languages. In addition to individual variables we will have n-adic predicate variables. 

We expect this second-order quantification to express quantification over properties 

and relations, in such a way that for example this formula:  
 

 (LL) ∀F(Fx ≡ Fy) → x = y 
 

expresses Leibniz’ identity of indiscernibles: if two objects have exactly the same 

properties then they are identical. 

It is obvious that such interpretation of second-order quantification may come 

very useful to metaphysicians. Important metaphysical laws such as Leibniz Laws 

cannot be expressed without using it. However, because of Quine’s criterion for 

ontological commitment, it is commonly thought that second-order quantification 

automatically brings ontological commitment to some sort of universals. But with the 

truthmaking criterion for ontological commitment, I will show that this view is not 

correct: we can quantify over properties and relations in a nominalist framework. 

I will construct a semantics for second-order languages within each ontological 

framework I have defined in section 2: strong and weak nominalism, weak and strong 

realism, and tropism. And I will show that the different semantics are not equivalent; 

the disagreement between those five ontological views extend from ontology to logic. 

 

3.01. Definition of second-order languages with identity 

A vocabulary � is a set of non-logical constants: it contains constant objects 

(noted for example a, b, c, etc.) and n-adic constant predicates (noted for example Pn, 

Qn, Rn, etc.) with an integer n ≥ 1. Assuming a set of variable objects {x1, x2, …} and 

sets of n-adic variable predicates {F1
n, F2

n, …} for each adicity, a second-order 

language �� is a set of formulas constructed in accordance with the following rules: 
 

(i) Atomic formulas. If Kn is an n-adic term predicate (i.e. a constant predicate  

of � or a variable predicate) and t1, …, tn are n term objects (i.e. a constant 

object of �, or a variable object), then this is a formula of ��: Kn(t1, …, tn). 
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(ii) Identity formula. If α and β are both term objects or both n-adic term 

predicates of the same adicity, then this a formula of ��: α = β.  
 

(iii) Quantified formulas. If φ is a formula of �� and V is a variable (a variable 

object or a variable predicate), then these are formulas of ��: ∀V(φ), ∃V(φ).  
 

(iv) Complex formulas. If φ and ψ are formulas of ��, these are formulas of ��: 

(¬φ), (φ & ψ), (φ ∨ ψ), (φ → ψ) and (φ ≡ ψ).  
 

(v) Closure. Every formula of �� is constructed by a finite number of 

applications of the preceding rules.  
 

Note that (i) allows variable predicates and objects to occur freely in ��.  

Wherever there is no ambiguity, I will drop parenthesis and n’s for adicity, and 

I will usually write Knt1…tn instead of Kn(t1, …, tn). Note also that I will use x, y and z 

as variable objects instead of the official x1, x2, etc., and Fn, Gn and Hn, instead of the 

official F1
n, F2

n, etc..  

I will generally use t as metavariable for term object, c for constant object, v for 

variable object, Kn for n-adic term predicate (constant or variable), Cn for n-adic 

constant predicate, and Vn for n-adic variable predicate., and φ and ψ for formulas. 

(Wherever I make a different use of those metavariables, the changes will be carefully 

specified.)  

 

 

3.1. Strong nominalist second-order logic 

3.1.1. A strong nominalist semantics: SNSOL 

How can we interpret second-order languages in a strong nominalist framework? 

A model in a strong nominalist semantics will be simply a structure <�, δ> where � 

is a set of urelements and δ a denotation function. Since there is nothing but an 

unstructured set of individuals, it seems difficult at first glance to make sense of 

second-order quantification as quantification over properties and relations.  

The most natural solution is to consider that we quantify somehow over the 

constant predicates themselves. (We will also see in 3.1.4. another solution, which I 

think is unsatisfying.) 

A very simple and elegant solution would be to interpret quantification over 

predicates as substitutional quantification. Indeed, substitutional quantification is a 

way to quantify over the constants of the language. A problem with this account is 

that it is difficult to make sense of formulas with free variable predicates. (Maybe it 

would require to modify the language in order to prevent predicate variables to occur 

freely.) I prefer nevertheless to stick with objectual quantification which is, I think, a 

more intuitive way to understand quantification. I will show that we can construct an 

appropriate domain of quantification for variable predicates of a second-order 
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language ��, using only the domain of individuals �, the vocabulary �, and the 

denotation function δ. 

Another preliminary remark: a nominalist should not be inclined to think that 

every constant object denotes an individual. Indeed, it would mean that names carry 

an ontological import, and I see no reason why a nominalist would endorse this view 

(and I will not see neither why a realist or a tropist would accept it): the world is 

independent from the language, and thus we cannot expect every element of our 

language to correspond to something in the world. Therefore, if we want our 

semantics to represent nominalism accurately, we should not presume that every 

constant object denotes an individual. Hence the resulting logic will be a free logic.  

Now, let us define a strong nominalist semantics for second-order languages. 

A nominalist model for a second-order language �� is a structure <�, δ> where 

� is a non-empty set of urelements (intuitively the individuals) and δ is a denotation 

function mapping certain constant objects of � to a member of � and every n-adic 

constant predicate of � to a (possibly empty) subset of �n (the set of every n-tuple of 

members of �). 

Intuitively that is to say: a constant object may denote an individual (or not), 

and each n-adic constant predicate denotes a set of n-tuples of individuals, which can 

be seen as the extension of the predicate (and this extension set can be empty).  

Let us assume that the 1-tuple <X> is identical to X. Hence the extension of a 

monadic predicate is a (possibly empty) set of individuals. 

How can we deal with variable predicates in this framework? As I suggested 

earlier, let us assume that second-order quantification in this nominalist framework is 

quantification over the constant predicates. Since constant predicates denote their 

extensions, the range of an n-adic variable predicate should be the set of the 

extensions of every n-adic constant predicate of the vocabulary. For example, if there 

are only two monadic predicates P1 and Q1 in �, then the range of the variable F1 

contains only the extension of P1 and the extension of Q1. That is the general idea. 

Let us now give to this idea a rigorous formulation. 

We need to describe more carefully the structure of the set �, the vocabulary of 

our second-order language ��. So far, all I have assumed is that it contains constant 

objects and constant predicates. I will assume now that � is constructed from sets of 

constants of different types: suppose that �o is a set of constant objects, �1 is a set of 

monadic predicates, and more generally �n is a set of n-adic predicates (n ≥ 1). A 

vocabulary � is the union of these sets. For an integer k ≥ 1 such that � does not 

contain any k-adic predicate, �k is empty. 

For every n ≥ 1, I define the set �n as follows:  

  If �n is non empty, then �n = {δ(X) : X ∈ �n} 

  If �n is empty then �n is empty too. 

Intuitively, �n is the set of the extensions of n-adic predicate of �. And if there 

are no n-adic predicates, then the set of their extensions is the empty set.  
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If there is at least one monadic predicate in �, then �1 is a set whose members 

are extensions of monadic properties, i.e. subsets of the domain of individuals �. 

Otherwise, if there are no monadic predicates in �, then �1 is the empty set.  

Thus we have: �1 ∈ �(�) (i.e. the power set of �). More generally, it is easy to 

prove that �n ∈ �(�n). Every �n is a (possibly empty) set of n-tuples of individuals. 

It is very important to note that the sets �n’s do not add anything to our 

ontology: their construction is entirely determined by the set of individuals �, the set 

of n-adic predicates �n and the denotation function δ. 

We can now define a value-assignment, say more simply an assignment, for 

variable predicates as well as for variable objects.  

A function s is an assignment if it satisfies those two conditions: 

i) For every variable object v, s(v) ∈ �.  

ii) For every n-adic variable predicate Vn, if �n is non empty then s(Vn) ∈ �n, 

and if �n is empty then s(Vn) is not defined. 

In other terms, a value-assignment maps each variable object to an individual 

(that is standard), and it maps each n-adic variable predicate to the extension of an 

n-adic constant predicate if the vocabulary contains at least one such predicate, 

otherwise the variable predicate has no assignment.  

We define a denotation function under a given assignment. The denotation 

under the assignment s of any term T (either term object or term predicate), is the 

function δs such that δs = δ(T) if T is a constant (object or predicate), and δs = s(T) 

if T is a variable (object or predicate). Intuitively that means that assignment plays 

the role of denotation function for variables. 

We can now define recursively the notion of truth in a model under an 

assignment for every formula of ��. We note Ms ⊨ φ to express that the formula φ is 

true in the model M under the assignment s.  
 

 (i) Atomic formulas.  

  Ms ⊨ Knt1…tn iff δs(t1), …, δs(tn) and δs(Kn) are all defined and 

            <δs(t1), …, δs(tn)> ∈ δs(Kn) 
 

(ii) Identity formulas.  

 Ms ⊨ α = β iff δs(α) and δs(β) are both defined and are the same. 
 

(iii) Quantified formulas.  

Ms ⊨ ∀v(φ) iff Ms’ ⊨ φ for every assignment s’ agreeing with s except possibly on v. 

Ms ⊨ ∃v(φ) iff Ms’ ⊨ φ for an assignment s’ agreeing with s except possibly on v. 

Ms ⊨ ∀Vn(φ) iff Ms’ ⊨ φ for every assignment s’ agreeing with s except possibly on Vn. 

Ms ⊨ ∃Vn(φ) iff Ms’ ⊨ φ for an assignment s’ agreeing with s except possibly on Vn.  
 

I skip the rules for complex formulas which are standard. The notions of truth 

in a model, satisfiability and validity are also defined as usual. Let us call the theory 

so defined SNSOL.  
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3.1.2. Remarkable features of SNSOL 

According to (ii), the identity a = a is not true iff a does not denote an 

individual. The same goes for non-denoting variable predicates: Fn is a non-denoting 

variable iff there are no n-adic constant predicates in the vocabulary �, and in such 

case Fn = Fn is not true. Therefore this formula: 
 

(ID) ∃Fn(Fn = Fn) 
 

is false iff there are no n-adic predicates in the vocabulary. In other terms, (ID) 

is valid for every adicity iff the vocabulary contains constant predicates of every 

adicity. In other terms, the formula ∃Fn(Fn = Fn) in SNSOL expresses the fact that 

there is at least one n-adic constant predicate. 

It would be incorrect to say that (ID) is not valid: its validity depends on the 

language we are interpreting. In models for second-order languages containing 

predicates of every adicity, (ID) is valid. We can say that (ID) is not generally valid, 

if by that expression we mean that it is not valid for every second-order language. 

(ID) is only occasionnally valid in SNSOL. (Usually, this distinction is useless since 

valid formulas are generally valid; this is a special case. In the rest of this paper, valid 

without further specification means generally valid.) 

We may notice that the equivalence ∀Fn(φ) ≡ ¬∃Fn¬(φ) does not hold if there 

are no n-adic predicates in �. Suppose indeed that φ is Fnx1…xn: then ∀Fn(φ) is false 

and ¬∃Fn¬(φ) is true.  

SNSOL is a free logic for constant objects: certain constant objects may not 

denote any individual. Therefore this formula schema is not valid: 
 

(C-IND)  ∃x(x = c) where c is a constant object. 
 

Indeed, this formula is false in a model where c does not denote any individual. 

On the other hand, the logic is not free for constant predicates. The following 

formula schema is valid: 
 

(C-PRED) ∃Fn(Fn = Cn) where Cn is an n-adic constant predicate 
 

It is an expected result in our strong nominalist semantics since quantification 

with a variable predicate is precisely understood as a sort of quantification over the 

constant predicates of the same adicity. 

An interesting feature of SNSOL is that two coextensive predicates are identical. 

It seems to be an expected consequence of the strong nominalist framework, which is 

purely extensional: since a predicate denotes its extension directly, and since two 

predicates are identical if they denote the same thing, then two predicates having the 

same extension are expected to be identical.  

We can express this idea by this formula: 
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 (COEXT)  ∀x1…∀xn(Fnx1…xn ≡ Gnx1…xn) ≡ Fn = Gn 
 

But this formula can be false in SNSOL. Suppose that there are no n-adic 

predicates: Fnx1…xn and Gnx1…xn are both false (since Fn and Gn lack denotation) and 

thus Fnx1…xn ≡ Gnx1…xn is true; on the other hand, Fn = Gn is false (since Fn and Gn 

lack denotation). So, like (ID), the formula (COEXT) is not generally valid but it is 

occasionally valid: it is valid in models for languages containing predicates of every 

adicity.  

But if we add to the formula the condition ∃Fn(Fn = Fn) which expresses the 

fact that there is at least one n-adic constant predicate, then we obtain a generally 

valid formula: 
 

(ID+COEXT)   ∃Fn(Fn = Fn) → (∀x1…∀xn(Fnx1…xn ≡ Gnx1…xn) ≡ Fn = Gn) 
 

Another interesting feature of this semantics is that there may be unsatisfied 

constant predicates. i.e. constant predicates whose extensions are empty. We could 

express this idea with this formula: 
 

(UNINST)  ∃Fn(Fn = Fn) & ∃Fn∀x1…∀xn ¬Fnx1…xn 
 

This formula is indeed true iff there is at least one n-adic constant predicate 

and no n-tuple of individuals satisfies this predicate. This formula in SNSOL is not 

valid but it is satisfiable, i.e. it is true in some models but not all.  

A last interesting feature of the semantics is that there may be bare individuals, 

i.e. individuals which do not belong to the extension of any predicate. This idea is 

expressed by the following formula: 
 

 (BARE)    ∃x∀Fn∀y1…∀y(n-1)(¬Fn(x, y1, …, y(n-1)) & … & ¬Fn(y1, …, y(n-1), x)) 
 

This formula is not valid but it is satisfiable in SNSOL. 

It is interesting at this point to see how each ontological thesis is somehow 

reflected by the logical status of a certain formula. The identity of coextensive 

predicate is expressed by the validity of (ID+COEXT); the possibility of unsatisfied 

predicates is expressed by the satisfiability of (UNINST); and the possibility of bare 

individuals is expressed by the satisfiability of (BARE). And since the logical statuses 

of those formula are just a consequence of the strong nominalist model, we can now 

justify very rigorously why strong nominalism implies those ontological thesis. 

 

3.1.3. Other ontological claims. Variants of SNSOL 

Suppose now that a strong nominalist wants to make further requirements on 

the frameworks besides the fact that there are individuals and nothing more. For 

example: 
 

(1) Every constant predicate is satisfied.  

(2) There are properties (monadic predicates). 
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(3) Every object have at least one property. 

(4) Two objects having exactly the same properties are identical. 
 

Can we represent those claims in the semantics? 

For (1), we have to impose to δ the following condition: if Cn is an n-adic 

constant predicate of �, then δ(Cn) is a non-empty subset of �n. (The original 

condition did not prevent δ(Cn) from being empty.) In such a case, (UNINST) is no 

longer satisfiable: its negation becomes a valid formula. 

For (2), we simply have to impose that �1 is not empty.  

For (3), we have to impose that a model of a language �� is such that for 

every X member of � there is a Y member of �1 such that X ∈ δ(Y). In such a case, 

(BARE) is no longer satisfiable; its negation becomes a valid formula. 

For (4), we have to impose that a model of a language �� is such that two 

distinct members of � do not belong to exactly the same extensions of members of �1. 

(More rigorously: if X1 and X2 are two distinct members of � then there must be at 

least one member Y of �1 such that δ(Y) contains X1 and not X2, or X2 and not X1.) 

Under this condition, the formula often quoted as Leibniz Law would be valid 

(generally valid): 
 

 (LL) ∀F(Fx ≡ Fy) → x = y 
 

Without this condition, this formula is satisfiable but not valid.  

There is an interesting feature of claims (1)-(3) from a strong nominalist point 

of view: they are not ontological claims strictly speaking. Indeed, they impose 

constraints on the language and its interpretation, not on the ontological framework. 

More generally we can observe that in a strong nominalist framework, a claim about 

quantification on predicates will not carry ontological significance since predicates are 

not standing for anything real.  

It is worth noting in conclusion that, in this strong nominalist semantics, 

second-order quantification is interpreted without any ontological commitment to 

such entities as universals: a model of �� is still simply a structure <�, δ>, in other 

terms it contains nothing but a set of individuals and a denotation function; therefore 

what makes true any formula of �� is nothing but the individuals and the way we 

interpret the language: we have seen how the domain of quantification of each n-adic 

variable predicate is built from the sets of individuals, the set of relevant constant 

predicates of the language and the denotation function. Thus, second-order 

quantification is interpreted in a satisfying way (since it expresses a quantification 

over properties and relations in a relevant way) and it does not break the strong 

nominalist requirement: there are individuals and nothing more. 
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3.1.4. Another strong nominalist second-order logic: SNSOL* 

Second-order quantification in a strong nominalist framework could be 

understood in a different way. While in SNSOL the range of the variable Fn is the set 

of the extensions of every n-adic constant predicate which actually belongs to the 

vocabulary of our language (thus we quantify somehow over the actual constant 

predicates of our language), what if the range of the variable Fn was the set of any 

possible extensions of an n-adic constant predicate?  

From a strong nominalist point of view, any set of n-tuples of individuals may 

constitute the extension of a predicate. Therefore, the range of the variable Fn would 

be simply the power set of �n. In fact, we will obtain a semantics for second-order 

languages commonly known as standard semantics. Let us call it SNSOL*. (In fact, as I 

will define it, SNSOL* is not exactly like standard semantics since I will admit non-

denoting constant objects, but that is the only difference.) 

A model of SNSOL* is a structure <�, δ> where � and δ are defined exactly like 

in SNSOL. The only difference between SNSOL and SNSOL* appears in the definition of 

assignment for variable predicates: a function s is an assignment in SNSOL* if s maps 

every variable object to a member of � (that is the same as before) and s maps every 

n-adic variable predicate to a member of �(�n), i.e. the power set of the set of every 

n-tuples of members of �. The rest of the semantics is left unchanged. 

 

3.1.5. Remarkable features of SNSOL* 

SNSOL* is very different from SNSOL. Let us see the logical statuses of (ID), 

(COEXT), (UNINST), (BARE) and also (LL). 

In SNSOL*, every variable predicate has a denotation (the variable Fn denotes 

any set of n-tuples of individuals), thus we have the general validity of (ID). (I 

precise “general” since (ID) is not generally valid in SNSOL, it is only valid if the 

vocabulary of the language contains predicates of every adicity.) 

(COEXT) is also generally valid in SNSOL* (while in SNSOL it is only occasionally 

valid), and a fortiori (ID+COEXT) also is generally valid. Like in SNSOL, predicates 

denotes directly their extensions, therefore two coextensive predicates are identical.  

The empty set belongs to the range of every n-adic variable predicate, and thus 

(UNINST) is not only satisfiable: it is valid in SNSOL*. (In SNSOL it is only satisfiable.)  

The set containing all individuals belongs to the range of the variable F, thus 

(BARE) is not satisfiable; its negation is valid. (In SNSOL (BARE) was satisfiable.) 

Finally, the most noticeable fact is the validity of (LL): 
 

  (LL)  ∀F(Fx ≡ Fy) → x = y 

 

3.1.6. Is SNSOL* ontologically relevant? 

But what does the formula (LL) mean in SNSOL*? This formula is supposed to 

express Leibniz’ identity of indiscernibles: if two individuals have exactly the same 
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properties, then they are identical. The problem with SNSOL* is that the formula (LL) 

rather expresses the trivial fact that if two individuals belong to exactly the same sets 

of individuals, then they are identical. (Indeed, the range of the variable F is the 

power set of the set of individuals.)  

As I said in the beginning of this section, we expect second-order quantification 

to express somehow quantification over properties and relations: that is why we 

expect (LL) to express Leibniz Law. Is SNSOL* able to represent such a quantification 

from a strong nominalist point of view? Well, it is true from a strong nominalist 

point of view that any set of individuals may be the extension of a possible monadic 

predicate, so a strong nominalist may argue that SNSOL* expresses a certain form of 

quantification over possible properties and relations. But I think that even a strong 

nominalist would admit that this interpretation is very dubious. When a strong 

nominalist is talking about every property of this apple, what is (s)he intuitively 

talking about? Is (s)he talking about every set of individuals containing this apple as 

SNSOL* would suggest? If (s)he thinks so, (s)he should indeed consider seriously this 

semantics. But I guess (s)he is rather talking about every property terms we can 

actually use for the description of this apple; and that is the interpretation expressed 

by SNSOL. This latter interpretation seems more natural and satisfying. 

In conclusion: literally speaking, second-order quantification in SNSOL* is only 

quantification over sets of n-tuples of individuals. Therefore, though this semantics 

(which is standard semantics for second-order languages) produces the most 

expressive second-order logic (it is a well-known fact that no deductive system can be 

complete for standard second-order semantics), it seems that SNSOL* is ontologically 

irrelevant.  

 

 

3.2. Weak nominalist second-order logic 

3.2.1. A first weak nominalist semantics: WNSOL  

As for strong nominalism, quantification over properties and relations can be 

understood in two different ways from a weak nominalist point of view. Therefore we 

will have two weak nominalist semantics: I will call the first WNSOL and the other 

WNSOL* as they correspond somehow to SNSOL and SNSOL*.  

Let us start with WNSOL. I will not say much about it since it is extremely 

similar to SNSOL. The basic idea is the same: we understand second-order 

quantification as quantification over the extensions of the constant predicates of the 

language. WNSOL and SNSOL will differ only as they are constructed from different 

ontological frameworks, but the resulting logic will be the same. 

A model of WNSOL for a language �� is a structure <�, δ> where � is defined 

as in 2.2 (therefore the set � of individuals is also defined), and δ is a denotation 

function mapping certain constant objects of � to a member of �, and every n-adic 

constant predicate of � to a (possibly empty) subset of �n. The rest of the semantics 
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is the same as for WNSOL. An important difference between SNSOL and WNSOL is the 

fact that in WNSOL an n-adic constant predicate may denote a member of �n (i.e. a 

set of resembling n-tuples of individuals): we can say of this predicate that it is a real 

predicate since it corresponds to an ontological structure. (Of course, we cannot 

expect every predicate in our language to be a real predicate.)  

However, those real predicates do not play any special role in this semantics. 

We can draw about WNSOL exactly the same conclusion we drew about SNSOL: (ID) is 

occasionally valid, (C-PRED) is valid, (COEXT) is occasionally valid, (ID+COEXT) 

is generally valid, and (UNINST) and (BARE) are not valid but satisfiable. Also we 

can make the same remarks we made in 3.1.3 about the way we should modify the 

semantics in order to satisfy the ontological claims (1)-(4).  

 

3.2.2. Another weak nominalist semantics: WNSOL* 

If we suppose now that the range of a variable predicate Fn is the set of any 

possible extensions of an n-adic constant predicate, as we did previously for SNSOL*, it 

would also lead us to a semantics very similar to SNSOL*. But we can do something 

slightly different: let us say that the range of a variable predicate Fn is the set of any 

possible extensions of a real n-adic constant predicate. By real predicate I mean a 

predicate whose extension is a set of resembling n-tuples of individuals. Now, it will 

not imply that any set of n-tuples of individuals can be a value of Fn; only a member 

of �n (a resemblance set) will be a possible value of Fn. If we follow this direction, 

WNSOL* will be very different from SNSOL*. And I will show that is an interesting 

theory from an ontological point of view.  

The only difference between WNSOL and WNSOL* appears in the definition of 

assignment for variable predicates: a function s is an assignment in WNSOL* if s maps 

every variable object to a member of � (that is the same as before) and every n-adic 

variable predicate to a member of �n (that is the important part). The rest of the 

semantics is all the same.  

 

3.2.3. Remarkable features of WNSOL* 

Let us recall first that the �n’s are sets of sets of n-tuples of members of �; 

intuitively those are sets of resembling n-tuples of individual. For example �1 may 

contain a set of individuals resembling each other in their redness, etc.. Note that a 

�n may also contain the empty set. It will serve as extension for unsatisfied 

predicates. 

Since an assignment maps every n-adic variable predicate to a ressemblance set, 

(ID) is generally valid in WNSOL*:  
 

(ID) ∃Fn(Fn = Fn) 
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In ontological terms, this formula means that for every adicity n there is at least 

one set of resembling n-tuples, and thus one possible n-adic real predicate. Since 

resemblance is reflexive, the validity of (ID) is not a surprise. 

One of the most interesting features of WNSOL* concern this formula schema: 
 

(C-PRED) ∃Fn(Fn = Cn) where Cn is an n-adic constant predicate 
 

We have seen earlier that this schema is valid in SNSOL and WNSOL since second-

order quantification is somehow quantification over the constant predicates. Is it also 

valid in WNSOL*? Suppose that the monadic predicate P is not a real predicate, i.e. 

the extension of P is not a set of resembling individuals. In WNSOL*, the variable F 

must denote a set of resembling individuals; therefore there is no assignment such 

that F and P denote the same extension. Hence F = P is false for every assignment, 

and thus ∃F(F = P) is false. It follows that (C-PRED) is not valid. However, it is 

satisfiable: indeed, (C-PRED) is true iff every constant predicate in the model is a 

real predicate. 

Second-order quantification in WNSOL* is a way to talk about real predicates. 

For example, the formula ¬∃F(F = P) is a way to say that P is not a real monadic 

predicate, and of course it can be true. It is worth noting that even if a predicate is 

not real, it still has a denotation and thus it may appear in true atomic formulas. 

The formula Pa & ¬∃F(F = P) may be true in a model. Therefore, existential 

generalization for predicate will fail in WNSOL*: Pa does not entail ∃F(Fa). If we 

translate this in ontological terms, it means: the fact that a satisfies P does not entail 

that a satisfies a real predicate. That seems correct. The existential generalization 

only works if you know that P is a real predicate; indeed Pa & ∃F(F = P) entails 

∃F(Fa). One may note that predicates in this semantics behave like free terms in free 

logic (though predicates always denote an extension in this semantics). 

Let us see other features of WNSOL*. (COEXT) is generally valid (and a fortiori 

(COEXT+ID) is also generally valid): predicates denote directly their extension, thus 

two coextensive predicates are identical. (UNINST) is not valid but it is satisfiable: 

there may be unsatisfied predicates.  

(BARE) is not satisfiable. It means that any n-tuple of individuals satisfies at 

least one possible real predicate, i.e. it belongs to at least one resemblance set. 

Indeed, since resemblance is reflexive, the �n are constructed in such a way that each 

n-tuple of individuals appears in at least one member of �n. (Note that in SNSOL and 

WNSOL, (BARE) is satisfiable.) 

(LL) is not valid in WNSOL*: there may be models with distinct individuals 

which are in perfect resemblance. The simplest is a model with two individuals and 

such that, for every adicity n, �n only contains �n. But (LL) is satisfiable. 

How could we modify WNSOL* in order that (LL) becomes valid? We would 

have to impose to a model the following condition: two distinct urelements must not 

belong to exactly the same members of �1. (More rigorously, if X1 and X2 are two 
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distinct urelements then there must be at least one member Y of �1 such that Y 

contains X1 and not X2, or Y contains X2 and not X1.) The condition concerns only 

the ontological element of the models itself; thus the claim that the indiscernibles are 

identical is a genuine ontological claim in WNSOL* (while in SNSOL* it was trivially 

true). 

 

3.2.4. Is WNSOL* ontologically relevant?  

While SNSOL* did not seem to express adequately quantification over properties 

and relations, I think WNSOL* does so from a weak nominalist point of view. When a 

weak nominalist is talking about every property of this apple, he may mean two 

different things: 1) he may talk about every (real or not) monadic predicate we can 

actually apply to this apple; that is the interpretation expressed by WNSOL; 2) since a 

weak nominalist supposes that the set of individuals is ontologically structured by 

resemblance and thus certain predicates are real predicates, he may also talk about 

every possible real monadic predicates that could apply to this apple; that is the 

interpretation expressed by WNSOL*. These interpretations are both plausible, but the 

second one is more appealing since it allows us to express claim concerning the 

resemblance structure which characterizes the weak nominalist framework; for 

example it allows us to express that a predicate is real or is not.  

Finally, it is worth noting that the ontological commitment of WNSOL* as well 

as WNSOL is still in strict accordance with weak nominalism: a model is a structure 

<�, δ>, where � is a resemblance structure on individuals and δ a denotation 

function, and thus every formula of the second-order languages is made true or false 

only by this resemblance structure and the interpretation of the constants of the 

language.  

 

 

3.3. Weak realist second-order logic 

3.3.1. A weak realist semantics for second-order languages: WRSOL 

The weak realist framework as we defined it earlier is a structure <�> where � 

is a set of couples (intuitively state of affairs), from which we can define a set � of 

individuals and a set 	 of universals (which is the union of sets 	1,…, 	n, of 

universals of different adicity). The first member of every couple in � is an n-adic 

universal, and the second member is an n-tuple of individuals. The framework is such 

that every universal is instantiated and every individual instantiates at least one 

universal. Individuals and universals are the urelements of the framework. (See 2.3. 

for all the details.)  

As previously and for the same reason, I will not assume that every constant 

object denotes an individual. I will not assume either that every predicate denotes a 

universal. 
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A weak realist model for a second-order language �� is a structure <�, δ> 

satisfying the following conditions: � is as defined in 2.3, and δ is a denotation 

function mapping certain constant object of � to a member of �, and certain n-adic 

constant predicates of � to a member of 	n (if 	n is not empty).  

A function s is an assignment if it satisfies the following conditions: for every 

variable object v, s(v) ∈ �; for every n-adic variable predicate Vn, if 	n is not empty 

then s(Vn) ∈ 	n, and if 	n is empty then s(Vn) is not defined. In other terms, a 

value-assignment maps each variable object to an individual (that is standard), and 

it maps each n-adic variable predicate to an n-adic universal if there is at least one 

such universal, otherwise it is not defined.  

We define a denotation function under a given assignment in the same way as 

before. We can now define recursively the notion of truth in a model under an 

assignment for any formula of ��. Let us start with the rule for atomic formulas: 
 

 (i) Atomic formulas.  

 Ms ⊨ Knt1…tn iff δs(t1), …, δs(tn) and δ(Kn) are all defined and  

              < δ(Kn), <δs(t1), …, δs(tn)>> ∈ � 
 

Intuitively, this rule means that Knt1…tn is true iff the universal denoted by Kn
 

and the individuals denoted by t1, …, tn constitute a state of affairs. 

The rest of the semantics is the same as in 3.1.1. Truth in a model, satisfiability 

and validity are also defined as usual. Let us call this theory WRSOL. 

 

3.3.2. Remarkable features of WRSOL 

WRSOL is a free logic for constant objects and also for constant predicates: 

constant objects and predicates may lack denotation. Thus, these two formula 

schemas are not valid: 
 

(C-IND)  ∃x(x = c) where c is a constant object 

(C-PRED) ∃Fn(Fn = Cn) where Cn is an n-adic constant predicate 
 

In WRSOL, an instance of (C-PRED) means: “the constant Cn denotes a 

universal”. (In WNSOL* this same formula means that Cn is a real predicate.) 

The formula (ID) is not valid: 
 

(ID) ∃Fn(Fn = Fn) 
 

Indeed, in a model where there are no n-adic universals, s(Fn) is not defined and 

thus the formula Fn = Fn is always false since the variables lack denotation. The 

truth of (ID) for an adicity n means that there is at least one n-adic universal in the 

model. 

Let us now consider the formulas (ID+COEXT), (UNINST) and (BARE).  

While (ID+COEXT) was a valid formula in every nominalist semantics, it is 

not in WRSOL: two predicates can be coextensive and yet be distinct. Indeed, two 
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predicates can denote two different universals, and therefore be distinct, though those 

universals are coextensive. However (ID+COEXT) is satisfiable. 

(UNINST) is not satisfiable in WRSOL. Indeed, if there is an n-adic universal, 

then there is a state of affairs in which this universal is instantiated by a n-tuple of 

individuals. (More formally: in the weak realist framework, the set of universals 	 is 

constructed from the set of state of affairs �, hence every universal appears 

instantiated in at least one state of affairs.) Thus the negation of (UNINST) is a 

valid formula of WRSOL.  

(BARE) is not satisfiable in WRSOL. Indeed, for a weak realist, every individual 

appears in at least one state of affairs and therefore it instantiates at least one 

universal. (More formally: in the weak realist framework, the set of individuals � is 

constructed from the set of states of affairs �, hence every individual appears 

instantiating a universal in at least one state of affairs.) Thus, the negation of 

(BARE) is valid in WRSOL. 

As before, we may note that the logical statuses of (ID+COEXT), (UNINST) 

and (BARE) in WRSOL express different ontological thesis which are implied by weak 

realism: two distinct universals can be coextensive, there cannot be uninstantiated 

predicates and there cannot be bare individuals. Of course, one may say that it does 

not really tell us anything new about weak realism (and one could make similar 

remarks concerning the other semantics); but remember that my purpose here is only 

to formalize in the most rigorous way how second-order formula are made true 

according to weak realism; this semantics does not show us anything new but it is 

still interesting in that it gives us a precise and complete picture of the 

world/language relation according to weak realism. Another interesting aspect also is 

that we can now deal with ontological questions raised by weak realism using a 

purely logical device: for example the ontological question “does weak realism implies 

the impossibility of bare individuals?” becomes the logical question “is the formula 

(BARE) satisfiable in WNSOL?”. 

 

3.3.3. Other ontological claims. Variants of WRSOL 

Let us consider the same claims (1)-(4) as before. How should we modify the 

semantics in order to represent those claims? 
 

 (1) Every constant predicate is satisfied.  

 (2) There are properties.  

 (3) Every object have at least one property.  

 (4) Two objects having exactly the same properties are identical. 
 

For (1), we must impose the following condition on the model: every constant 

predicate denotes a universal. (Indeed, it is a sufficient condition since every universal 

is instantiated in WRSOL.)  

For (2) we only have to specify that 	1 must not be empty. 
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For (3) the framework must satisfy the following condition: for every X member 

of �, there is a Y member of 	1 such that the couple <Y, X> is a member of �. 

For (4), the framework must be such that two distinct members of � are not 

instances of exactly the same members of 	1. (More rigorously: if X1 and X2 are two 

distinct members of � then there must be at least one member Y of 	1 such that the 

couple <Y, X1> is a member of � and not <Y, X2>, or <Y, X2> is member of � and 

not <Y, X1>.) 

Note that (2), (3) and (4) impose purely ontological constraint: we can say that 

they define variants of the weak realist framework.  

 

 

3.4. Strong realist second-order logic 

3.4.1. A strong realist semantics for second-order languages: SRSOL 

I defined a strong realist ontological framework as a structure <	, ε> where 	 

is a set {	1, … 	n, …} whose members are distinct sets of urelements (intuitively they 

are n-adic universals), and ε is an instantiation function mapping certain members of 

the 	n’s to sets of n-tuples of urelements (all distinct from the members of the 	n’s), 

and I defined the set of individuals � as the set of those urelements. (See 2.4 for the 

details.)  

As previously in WRSOL, I will assume that certain constant objects and 

constant predicates may not denote. I define a strong realist model for a second-order 

language �� as a structure <	, ε, δ> where 	 and ε are defined as in 2.4, and δ is a 

denotation function mapping certain constant objects to a member of � and certain 

n-adic constant predicates to a member of 	n.  

The notions of assignment and denotation function under an assignment are 

defined exactly as in WRSOL. (Intuitively: an assignment maps each variable object to 

an individual, and it maps each n-adic variable predicate to an n-adic universal if 

there is at least one n-adic universal, otherwise it is not defined.) 

We can now define recursively the notion of truth in a model under an 

assignment for any formula of ��. First, we give the rule for atomic formulas:  
 

(i) Atomic formulas.  

 Ms ⊨ Knt1…tn iff δs(t1), …, δs(tn) and δ(Kn) are all defined and  

        <δs(t1), …, δs(tn)> ∈ ε(δ(Kn)) 
 

Intuitively, this rule means that Knt1…tn is true iff the n-tuple of individuals 

denoted by t1, …, tn instantiates the universal denoted by Kn
 . 

The other rules are literally the same as in the other semantics. (See 3.1.1 for 

the details.) Let us call this theory SRSOL. 
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3.4.2. Remarkable features of SRSOL 

SRSOL is a free logic for constant objects and constant predicates (like WRSOL). 

Thus (C-IND) and (C-PRED) are not valid. 

For the same reason as in WRSOL, (ID) and (ID+COEXT) is not valid in SRSOL.  

(BARE) is not satisfiable in SRSOL because every individual must appear in the 

mapping of the instantiation function ε.  

(UNINST) is satisfiable (but not valid) in SRSOL because ε does not map every 

universal to a n-tuple of individuals. There may be uninstantiated universals. 

As before, it is worth noting that the logical statuses of those formulas in SRSOL 

expresses ontological thesis which are implied by strong realism: two distinct 

predicates may be coextensive, there may be uninstantiated universals and every 

individual instantiates at least one universal. 

 

3.4.3. Other ontological claims. Variants of SRSOL 

Let us consider the claims (1)-(4) as in 3.1.3 and 3.3.3. How should we modify 

the semantics in order to represent those claims?  

For (1) we must impose the following condition on models: every constant 

predicate denotes a universal, and for every member X of a set 	n, if there is a Y 

member of �n such that δ(Y) = X, then ε(X) is a non-empty set. (The condition is 

more complex than the one in WRSOL because in WRSOL there are no uninstantiated 

universals, therefore if a constant predicate denotes a universal then this constant 

predicate is instantiated. In SRSOL, even if a constant predicate denotes an universal, 

it is not guaranteed that this universal is instantiated.)  

For (2) We only have to specify that 	1 must not be empty. It is the same as in 

WRSOL, but note that it does not assure that there are instantiated properties: there 

may be properties but only uninstantiated ones.  

For (3) the framework must satisfy the following condition: for every X member 

of �, there is a Y member of 	1 such that X is a member of ε(Y). 

For (4) the framework must be such that two distinct members of � are not 

instances of exactly the same members of 	1. (More rigorously: if X1 and X2 are two 

distinct members of � then there is a Y member of 	1 such that X1 is a member of 

ε(Y) and not X2, or X2 is a member of ε(Y) and not X1.)  

As for WRSOL, we may observe that (2), (3) and (4) impose purely ontological 

constraint: they define variants of the strong realist framework. 

 

 

3.5. Tropist second-order logic 

3.5.1. A tropist semantics for second-order languages: TSOL 

Let us briefly recall what is the tropist framework as it is defined in 2.5. It is a 

structure <
, �> satisfying the following condition. First, 
 is a set of non-empty 

disjoint sets of urelements (intuitively it is a compresence structure on tropes). Then 
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we define the set of tropes � as the union of the members of 
. Finally, we have to 

define �. Intuitively, it is a set whose members are sets of resembling tropes, either 

monadic or polyadic. Remember that we have defined an n-adic tropes for n ≥ 2 as 

n-tuples of monadic tropes. The set � must be such that: i) if a trope appears in an 

n-adic trope then it appears only in this n-adic trope; ii) each trope resembles at least 

itself. (See 2.5 for formal details.)  

Now, I will define a semantics for second-order languages in this tropist 

framework. As previously, I will not suppose that constant objects and constant 

predicates always have a denotation. 

Let us call this last theory TSOL. A model of TSOL for a second-order language �� 

is a structure < 
, �, δ> where 
 and � (and therefore also the set � of tropes) are 

defined as in 2.5, and δ is a denotation function mapping certain constant objects of 

� to a member of 
, and certain n-adic constant predicates of � to a member of � 

whose members are sets of n-tuples of tropes. Intuitively: a constant object may 

denote a set of compresent tropes, and an n-adic constant predicate may denote a set 

of resembling n-adic tropes. 

An assignation function s is defined as follows: a function s is an assignation if 

it maps every variable object to a member of 
 and every n-adic variable predicates 

to a member of � whose members are sets of n-tuples of tropes if there is such a 

member of �, otherwise it is not defined. (Thus, s(Fn) is not defined if there are no 

n-adic tropes.)  

We define as usual a denotation function under a given assignment. And we can 

finally define recursively the notion of truth in a model under an assignment for any 

formula of ��. 
 

 (i) Atomic formulas.  

 Ms ⊨ Knt1…tn iff δs(t1), …, δs(tn) and δ(Kn) are all defined and there are X1, …, 

Xn such that X1 ∈ δs(t1), …, Xn ∈ δs(tn) and <X1, …, Xn> ∈ δ(Kn). 
 

Intuitively, this rule means that Knt1…tn is true iff there are n tropes X1, …, Xn 

such that each one belongs respectively to the set of compresent tropes denoted 

respectively by t1, …, tn, and the n-tuples <X1, …, Xn> is an n-adic trope belonging to 

the set of resembling n-adic tropes denoted by Kn. 

The other rules are the same as before. (In fact, concerning the semantic rules, 

all the semantics we have seen in this paper differ only with respect to the rule for 

atomic formulas.)  

Truth in a model, satisfiability and validity are also defined as usual.  

 

3.5.2. Remarkable features of TSOL 

TSOL is a free logic for constant objects and constant predicates (like WRSOL and 

SRSOL). Thus (C-IND) and (C-PRED) are not valid. 
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The assignation of an n-adic variable predicate Fn is not defined when there are 

no n-adic tropes, and a tropist framework may not contain tropes of every adicity. 

Thus, (ID) is not valid. 

(ID+COEXT) also is not valid (though it is satisfiable). Predicates may denote 

distinct sets of resembling tropes which belongs to the same sets of compresent 

tropes. Consider for example a world where the only sets of compresent tropes (i.e. 

the only individuals) are two red round things: one is constituted of a trope of Red1 

and a trope of Round1, the second is constituted of a trope of Red2 and a trope of 

Round2. And assume that there are only two sets of resembling tropes in this world 

(i.e. two universals): one consists of the tropes of Red1 and Red2, the other of the 

tropes of Round1 and Round2. These two universals are coextensive and yet distinct.  

(UNINST) is not satisfiable. Indeed, the �n’s cannot contain the empty set, 

therefore a denoting predicate will always denote a set containing at least one trope; 

this trope necessary belongs to a set of compresent tropes; and this set constitutes an 

individual to which this predicate applies. 

One may wonder why a �n cannot contain the empty set while in the weak 

nominalist framework we allow the empty set to appear among the resemblance sets. 

Well, the difference is that in a tropist framework, the sets of resembling tropes are 

supposed to stand for universals, and it would seem to me very dubious that the 

empty set may stand for a universal. (In the weak realist framework, the sets of 

resembling individuals stand for the extensions of predicates, that is very different; it 

seems to me rather natural that the empty set may be the extension of a predicate.) 

(BARE) is not satisfiable. Indeed, every individual is constituted of at least one 

trope (the compresence structure represented by 
 is a set of non-empty disjoint sets 

of tropes), and every trope resemble at least itself; thus every individual instantiates 

at least one universal. 

(LL) is not valid but it is satisfiable. (If we want (LL) to be valid, we should 

impose the following condition on models: two distinct members of 
 must not 

overlap exactly the same members of �.) 

 

 

3.6 Comparison and conclusion 

We can sum up in a table the differences between the seven semantics we have 

constructed. 

‘V’ means that the formula is valid (generally valid).  

‘OV’ means that the formula is occasionally valid (i.e. valid for certain 

languages but not all). 

‘S’ means that the formula is not valid but is satisfiable (true in some models 

but not all).  

‘U’ means that the formula is not satisfiable (therefore its negation is valid).  
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        SNSOL/WNSOL     SNSOL*  WNSOL*       WRSOL        SRSOL      TSOL 

(ID)           OV        V     V  S  S   S 

(C-PRED)  V  V    S  S  S   S 

(ID+COEXT)  V  V    V  S  S   S 

(UNINST)    S  V    S  U  S   U 

(BARE)      S  U          U  U  U   U 

(LL)   S  V           S          S              S         S 

We have now a clearer view of how the disagreements between strong 

nominalism, weak nominalism, weak realism, strong realism and tropism, extend from 

ontology to logic. Endorsing an ontological view or another has (or should have) an 

impact on the logic we use.  

However, a careful reader may have noticed that the table shows no difference 

between TSOL and WRSOL. Maybe those two semantics are logically equivalent; I have 

not studied this question thoroughly. Anyway, they differ greatly from an ontological 

point of view: the two frameworks are not the same at all, the same formula does not 

mean the same thing in a semantics and in the other, and the way a formula is made 

true in one semantics is very different from the way the same formula is made true in 

the other semantics.  

Let us take for example the formula (BARE) and see what it means in those 

different semantics. In SNSOL and WNSOL it means that there is an individual that 

does not satisfy any constant predicate of the language. In SNSOL* it means that there 

is an individual that does not belong to any set of individual. In WNSOL* it means 

that there is an individual that does not belong to any set of resemblance. In WRSOL 

and SRSOL it means that there is an individual that does not instantiate any 

universal. And in TSOL it means that there is a set of compresent tropes such that 

none of those tropes belong to a set of resembling tropes. Those are five very different 

readings. 

A first interesting result of this study of second-order logics is that we have seen 

that we can perfectly interpret second-order quantification as quantification over 

properties and relations without being ontologically committed to universals: see 

SNSOL and WNSOL. More generally, I hope it is now clear why, when we interpret a 

certain language in a certain ontological framework, the features of the language 

cannot change anything to the ontological commitments of the semantics: the 

ontological commitments are only determined by the ontological framework from 

which we construct the semantics.  

There is another important aspect of this study: though we have not learned 

anything new about those five different ontological views, we have formalized in the 

most rigorous way the world/language relation (and notably the truthmaking 
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relation) according to these different views; and various metaphysical questions can 

now be treated by pure logic in those frameworks. I think it is good enough to show 

that the method I have been using here is an interesting way to do metaphysics.  

 

 

 

4. Other perspectives: interpreting quantified modal logic 

The method I have exposed and applied for second-order logic could be used for 

the construction of semantics for any other kind of language; for example we could 

consider quantified modal languages. As a conclusion to this paper, I will make few 

remarks about how we could construct such semantics. 

There are various ways of interpreting quantified modal languages. One of the 

best known is Lewis’ modal realism according to which there is a plurality of worlds, 

all isolated from each other; a world is made of nothing but individuals and each 

individual belongs to only one world. Though Lewis endorses nominalism, a lewisian 

framework would be different from the strong or weak nominalist framework we have 

defined. A lewisian framework could be for example a structure <�> where � is a 

set of non-empty disjoint sets of urelements, and we define � as the set of those 

urelements; intuitively, � stands for the set of all possible worlds: thus each possible 

world is constituted of a set of individuals, and each individual only belongs to one 

and only one world. Of course, this framework is not yet adequate to represent Lewis’ 

theory, but my point here is that modal realism is a an ontological view that requires 

the construction of another kind of ontological framework. 

Could we construct a semantics for quantified modal logic from one of the five 

ontological frameworks defined in section 2? We must note that the individuals of the 

strong and weak nominalist frameworks, the individuals and universals of the weak 

and strong realist frameworks, and the tropes of the tropist framework, are supposed 

to be actual entities (actual individuals, universals and tropes); in none of these 

frameworks it seems that we can find possibilia or possible worlds. How are we going 

to interpret modal formulas?  

The solution is to construct ersatz of possible worlds from the actual entities of 

the framework. It is obviously an actualist solution. In fact we can know a priori that 

if one achieves the construction of an appropriate semantics for quantified modal 

languages from one of those five frameworks, it will be the expression of an actualist 

theory of possibility: those frameworks only contain actual entities, therefore only 

actual entities will make true the modal formulas interpreted in any semantics 

constructed from those frameworks, and thus we will be ontologically committed only 

to actual entities. 

Let us finally give a sketch of such a semantics. One could construct a weak 

realist semantics for quantified modal languages inspired by the theory set forth by 

Armstrong [13]. It is a combinatorial theory of possibility. Basically, we start from a 
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world of (actual) states of affairs; we assume that any combination of an n-adic 

universal with n individuals stands for a possible state of affairs; and any set of 

possible states of affairs stands for a possible world. These ideas can be thoroughly 

expressed within the weak realist framework <�>. (See 2.3. Each member of � 

represents a state of affairs as a couple whose first member is an n-adic universal and 

the other is an n-tuple of individuals; the set 	 is defined as the set {	1, …, 	n, …} 

whose members are sets of n-adic universals, and � is defined as the set of 

individuals.) We can define the set �* of possible states of affairs as the set of couples 

<X, Y> such as X ∈ 	n and Y is an n-tuple <Y1, …, Yn> such as Y1 ∈ �, …, Yn ∈ �. 

And we can define the set of worlds � as the power set of �*. (This is an imperfect 

sketch. In fact, we should add several constraints on the construction of possible 

worlds in order to fit exactly with Armstrong’s view, but it gives a first idea of how 

we can do it.) It is very important to note that �* and � do not add anything to the 

ontological framework: they both have been constructed from � and nothing more. 

Then we can use this set of worlds for the interpretation of quantified modal 

languages in the usual way. Since the construction of those worlds is entirely 

determined by the actual states of affairs, what makes true the modal formulas would 

be in fine nothing more but actual states of affairs: the ontological commitments of 

the semantics are only determined by the ontological framework from which it is 

constructed. 
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